

Industrial Research Chair Control of Oilsands Processes

Process Data Analytics

State of the art and applications in oil sands industry

Biao Huang

Department of Chemical and Materials Engineering University of Alberta

Sept. 2nd, 2016

Presentation @ IFAC MMM Vienna - BH

- Data Analytics State of the art
- Oil Sands Industry
- Process Data Analytics in Applications
- Analytics Toolboxes in Progress
- Conclusion

http://www.blueoceanmi.com/big-data-analytics-overview

http://www.forbes.com/sites/louiscolumbus/2015/03/15/data-analytics-dominates-enterprises-spending-plans-for-2015/#5df926dc3eb4

A CONTRACT OF A

Typical Algorithms in Data Analytics

- Supervised learning
 - Regression: LASSO, Decision tree, PLS, MLR
 - Classification: Logistic regression
 - Hybrid: Gaussian Process, Neural Network, SVM/SVR
 - ▶ ...
- Unsupervised learning
 - Dimension Reduction: PCA
 - Clustering: k-means
 - ▶ ...
- Inference
 - Maximum Likelihood, Expectation Maximization
 - Bayesian Method, Variational Bayesian, Bayesian Network
 - ▶ ...

Data Analytics Software Platform and Toolboxes

http://www.kdnuggets.com/polls/2015/analytics-data-mining-data-science-software-used.html

Nonlinearity – Local Solution JIT modeling = Locally weighted modeling = Relevance-In-Space modeling = Lazy modeling Dutput Input

Contributed by Sanghong Kim from Kyoto University

Source: http://www.bantrel.com/markets/downstream.aspx

Theory of Data Based Image Analysis

- Images can be modeled using Markov random field (MRF).
 - Each pixel is considered as a random variable (RV)
 - Each random variable (pixel) has a corresponding

observation (corrupted with noise)

Aim: to recover clean pixels from noisy observations

MRF is employed to perform image segmentation and classification.

Noisy observations

Process & Motivation

Froth	↑ H
Middling	It is very important to correctly control the Froth/middling interface height to avoid unwanted consequences:
Tailings	 Increasing the possibility of sanding Reducing bitumen recovery Increasing water content in Froth increase the processing load on downstream Causing environmental impact due to increased bitumen content in tailings

Problem description & data visualisation

There is no clear characteristic behavior of profiler data around the interface

The model will be updated with the most recent profiler & camera data and be used when the camera data are not available

The RPLS prediction is able to track the reference when the camera readings are not available

PLS helps in dimensionality reduction in X

Closer we are to the current (update) time, better the interface prediction performance is

Process Diagnosis Analytics - Toolbox		
•	Main	
Fi	ile Causal Analytics Oscillation Diagnostics 🏻 🛥	
	Process Diagnostic Analytics	
	Limited Trial Version	
	Developed by:	
	Computer Process Control Group Department of Chemical and Materials Engineering	
 Causal Analytics: Extracts causality relations among the variables from data Oscillation Diagnostics: Detects and characterizes oscillatory type of faults 		

Conclusion

- Data analytics is an emerging area of research and applications
- Great potential, demands and opportunities
- Applicable in every sector
- Opportunity for everyone

- Zheyuan Liu, Fadi Ibriham, Ruomu Tan, Anahita Sadeghian, Ming Ma, Elham Naghoosi
- NSERC Industrial Research Chair in Control of Oil Sands Processes
- AITF Industry Chair in Process Control
- University of Alberta